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The delay differential equations, which have some arguments with time-lags, are 
widely used in many areas of physics, engineering, economics and biology. In this 
work, we have applied the generalized differential transform method which is a semi 
numerical-analytical method, for solving a delay differential equation and used the 
Padé-approximation for improving the accuracy and convergence of differential 
transform method’s solutions. Theoretical considerations are discussed. Some examples 
are used to illustrate the validity and the great potential of this method in solving delay 
differential equations. Comparisons are made between the results of the approximate 
solutions and exact solutions. The results show that proposed method is an effective 
method in solving delay differential equations. 

1. Introduction 

Delay differential equations (DDEs) have a wide range of application in science and 

engineering. They arise when the rate of change of a time-dependent process in its mathematical 

modeling is not only determined by its present state but also by a certain past state. It has been 

recognized that phenomena may have a delayed effect in a differential equation, leading to what is 

called a DDE. DDEs play an important role in modeling many phenomena in applied sciences 

including the fields as diverse as engineering, biology and economy. For example, Baker et al. [1] 

stated some of the application areas which include population dynamics, infectious disease, 

physiological and pharmaceutical kinetics, chemical kinetics, the navigational control of ships and 

aircraft and more general control problems. More examples of the researches dealing with DDEs 

can be referred to as Driver [2], Kuang [3] and Macdonald [4]. The concept of the differential 

transform method (DTM) was first proposed by Zhou [5] in 1986, who solved linear and nonlinear 

problems in electrical circuit problems. DTM obtains an analytical solution in the form of a 

polynomial. It is different from the traditional higher order Taylor series method, which requires 

symbolic computation of the necessary derivatives of the data functions. The Taylor series method 

                                                
 Corresponding Author: 
E-mail, aminikhah@guilan.ac.ir – Tel, (+98) 1313233509 – Fax, (+98) 1313233509 

Received: 16 September 2015; Accepted: 20 October 2015 



Aminikhah and Dehghan - Comput. Res. Prog. Appl. Sci. Eng. Vol. 01(04), 112-125, November 2015 

113 

is computationally time consuming for larger orders. Chen and Ho [6] developed this method for 

partial differential equations and Ayaz [7] applied it to the system of differential equations. During 

recent years, many authors have been used this method for solving various types of equations. For 

example, this method has been used for partial differential equations [8-10], fractional differential 

equations [11], difference equations [12] and Volterra integral equations [13]. Also, this method has 

been successfully applied for solving many types of nonlinear problems [14-17]. An important fact 

is that polynomials are used to approximate truncated power series. Furthermore, the singularities of 

polynomials cannot be seen obviously in a finite plane. Since the radius of convergence of the 

power series may not be large enough to contain the two boundaries, it is not always useful to use 

the power series [18]. Padé-approximation is applied in order to manipulate the obtained series for 

numerical approximations to overcome this difficulty. This technique is the best approximation for 

a polynomial approximation of a function into rational functions of polynomials of given order [19, 

20]. 

In the present work, a numerical method based on the generalized differential transform method 

(GDTM) and Padé-approximation is proposed, and then applied to the nonlinear delay differential 

equations (NDDEs) which can be written as the following basic form [21]  

1
( ) ( )

0 0
( ) ( ) ( ) ( ) ( ),

J m
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jn jn jn
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u t t u t g u f t  
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with initial condition 

1
( )

0
(0) , 0,1,..., 1,

m
n

in i
n
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(2) 

where 

1
( ) , , , 1, ,0 1,i
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i i i i jn jni

g u bu d u d l    


              

and ( )m  in ( )mu  is considered as the m -th derivative of the functionu .  

The article is summarized as follows: section 2 introduces the basic theorems for GDTM and 

its application to Eq. (1). Section 3 describes the Padé-approximation technique briefly. In section 

4, the proposed method is applied to several types of Eq. (1), and a comparison is made with the 

available analytic or exact solutions which have been reported in other published works in the 

literature. Finally, a brief conclusion is given in the last section. 
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2. One-Dimensional GDTM  

The one-dimensional differential transform of the k -th derivative of a function ( )y t  at the point 

0t t  is defined as follows 

0

( )1( )
! k

k

t t

y tdY k
k dt 

 
 
 
  

  
(3) 

where ( )y t is the original function and ( )Y k is the transformed function. The differential inverse 

transform of ( )Y k is defined as 

0
0

( )( )( ) k

k
Y k t ty t




   

(4) 

From Eqs. (3) and (4), we arrive at 

( ) ( )0( )
!0

0

k kt t d y t
y t

k kk dt t t

 
 

 

 
(5) 

which implies that the concept of differential transform is derived from the Taylor series expansion, 

but the method does not evaluate the derivatives symbolically. However, relative derivatives are 

calculated by an iterative way which is described by the transformed equations of the original 

function. In real applications, the function ( )y t is expressed by a finite series and Eq. (4) can be 

written as 

0
0

( )( )( )
N

k

k
Y k t ty t


   

(6) 

Here, N is a sufficiently large integer. The fundamental operations performed by differential 

transform can readily be obtained and are listed in Table 1. 

2.1. Theorems for DDEs [22, 23] 

In this section, the theoretical considerations for DDEs are introduced. The following theorems 

give arise to the generalized differential transform of given function at 0 0t  . 

Theorem 1. If ( ) , 1
t

y t u a
a

     
, then, 1

( ) ( )
k

Y k U k
a
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Table 1. The fundamental operations of DTM 

Original function Transformed function 

( ) ( ) ( )y t u t v t   ( ) ( ) ( )Y k U k V k   
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Now, according to the Table 1 and above theorems, the transformed problem of Eq. (1) at 

0 0t   can be expressed as follows 

 
1

0 0 0

( )!
( ) ( ) ( ) ( ) ( )

!

J m k

jn jn
j n s

k m
U k m M s Y k s G k F k

k



  


      

(7) 

where ( ), ( ), ( )jn jnM k Y k G k  and ( )F k are transformed functions of ( )jn t , ( )( )n
jn jnu t  , ( )g u  and 

( )f t , respectively. Also, the transformed initial condition of Eq. (2) is given by 



Aminikhah and Dehghan - Comput. Res. Prog. Appl. Sci. Eng. Vol. 01(04), 112-125, November 2015 

116 

1

0
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in i
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Uc n i m



    

(8) 

Based on the initial conditions in Eqs. (7) and (8), we can derive the coefficients ( )U k  and 

according to Eq. (6), we obtain the GDTM approximate solution as 

0

( ) ( )
N

k

k

u t U k t


   
(9) 

3. Padé-approximation 

Padé-approximations [18-20] are widely used in computer calculations due to the fact that this 

technique often gives better approximation of the function than truncating its power series and it 

may even work where the power series does not converge. For simplicity, we denote the [ , ]L M

Padé-approximation to 
0

( ) k
kk

f t a t



   by 
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P t
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Q t
  

(10) 

where 

2 3
0 1 2 3

2 3
0 1 2 3

( ) ...

( ) ...

L
L L

M
M M

P t p p t p t p t p t

Q t q q t q t q t q t

     

     
 

(11) 

with the normalization condition (0) 1MQ  . The coefficients of ( )LP t and ( )MQ t  can be uniquely 

determined by comparing the first ( 1)L M   terms of the functions [ , ]f L M  and ( )f t . In practice, the 

construction of the [ , ]L M Padé-approximation involves only algebra equations, which are solved by 

means of the Mathematica or Maple package. To improve the accuracy and convergence of the 

DTM solution of Eq. (9), the Padé-approximation is used. 

4. Numerical Examples 

In order to illustrate the advantages and the accuracy of the DTM-Padé technique for solving 

the nonlinear DDEs, we apply this method for solving three linear and nonlinear DDEs from class 

of Eq. (1). 

Example 1: In this example, we consider Eq. (1) with 4, 2m J  and the following nonzero 

coefficients ,jn jn  and jn  
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The nonlinear DDE which results from the above coefficients is as follows 

(1) 2 31
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2 2 4
t t

u t tu t t u t t u u f t
          

 (12) 

with the following initial condition  

2(0)u e  (13) 

The exact solution of this problem is 
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(14) 

According to the Table 1, the differential transform of Eq. (12) at 0 0t   is obtained as 
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The initial condition in Eq. (19) can be transformed as 

2(0)U e  (16) 

By using the initial condition at Eq. (17) and solving the system of equations that can be 

obtained from Eq. (15) for 8N   and 0,1..., 7k  , we can derive the coefficients ( )U k  and according 

to Eq. (9), we can obtain the 8-order approximate solution as follows 

2 2 3

4 2 5 3 6

4 7 5 8

( ) 0.203002924856 0.0507507314976 0.0479312470814

0.0137449867738 0.243178632802 10 0.314230176936 10

0.321442281989 10 0.290305109856 10 .

u t e t t t

t t t

t t



 

 

    

    

  

 
(17) 

By applying the [3,5]Padé-approximation to the solution of Eq. (17), we reach to 

-2 2[3,5] ( 0.146011954592 0.124660846032

3 20.0106802836620 )/(1 0.421109476411 0.0855382320452

3 -3 4 -4 50.0109739441614 0.957289317417 10 0.566884355876 10 )

u e t t

t t t

t t t

  

  

    

 

(18) 

Numerical results obtained by Eqs. (17) and (18) are listed in Table 2. Plots of the exact and 

approximate solutions are exhibited in Figure 1. 

Table 2. Numerical results of Example1    

t  exact solution GDTM solution GDTM-Padé solution error (GDTM) error (GDTM-Padé) 
0.0  0.135335283237  0.135335283237  0.135335283237  0  0  
0.5  0.026349806141  0.026349805410  0.026349806053  107.3 10  118.7 10  
1.0  0.082084998624  0.082085315482  0.082085018441  73.2 10  82.0 10  
1.5  0.175801618318  0.175812374990  0.175801933791  51.1 10  73.2 10  
2.0  0.248935341840  0.249065592895  0.248936885149  41.3 10  61.5 10  
2.5  0.300500110696  0.301399553692  0.300503170146  49.0 10  63.1 10  
3.0  0.332171217645  0.336527544757  0.033216955293  34.4 10  61.7 10  
3.5  0.346886751376  0.363404420027  0.346856024257  21.7 10  53.1 10  
4.0  0.347997138885  0.400345847857  0.034787959618  25.2 10  41.2 10  
4.5  0.338775555339  0.483433031719  0.338464933154  11.4 10  43.1 10  
5.0  0.322160899608  0.680909223823  0.321491651365  13.6 10  46.7 10  

Example 2: We consider Eq. (1) with 2, 1,m J  and the following nonzero coefficients jn , jn  

and jn  as 
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Figure1. The compared results for the GDTM solutions, GDTM-Padé solutions and exact solutions for Example 1 
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Also, the nonzero coefficients inc  in the initial conditions are given as 

00 01 10 113, 6, 2, 1,c c c c      

and 0 1
1

2,
2

      

These coefficients result in the following nonlinear delay differential problem 

(2) (1) 21
( ) ( 1) ( ) 2 ( ) ( )

5 3
t t

u t e u t t u t u u t f t                    
 (19) 

with the initial conditions  
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(1)
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(20) 

The exact solution of this problem is 

1 1
( ) sin cos

2 3 3 2
t t
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 (21) 

The differential transform of Eq. (19) at 0 0t  is as follows 
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Also, Eq. (20) is transformed as  

(1)1 1
(0) (0) , (1) (0)

3 6
U u U u     (23) 

Using the Eqs. (22) and (23) and by taking 5N  , 0,1,2, 3k  , the coefficients ( )U k  are 

determined. Then, by using the inverse transformation rule (Eq. (9)), the 5-order approximate 

solution is obtained as follows 

2 3 3 4

4 5

1 1
( ) 0.0416666665130 0.00308640088768 0.867875952857 10

3 6
0.179246289966 10

u t t t t t

t





     

 
 

(24) 

By applying the [3, 3] Padé-approximation to the solution of Eq. (24), we reach to 
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2 3

2 3

1
0.320139569072 0.0419625583936 0.0159946118382

3[3, 3]
1 0.460418707215 0.0206783211124 0.00848854478165

t t t
u

t t t

  


  
 

(25) 

Numerical results obtained by these approximations are shown in Table 3. For better 

comparison, the exact and approximate solutions for this example are plotted in Figure 2. 

Table 3. Numerical results of Example 2 

t  exact solution GDTM solution GDTM-Padé solution error (GDTM) error (GDTM-Padé) 

0.0  0.333333333333  0.333333333333  0.333333333333  0  0  
0.5  0.405918873584  0.405919002319  0.405918952945  71.3 10  87.9 10  
1.0  0.456124869028  0.456132733181  0.456127436534  67.9 10  62.6 10  
1.5  0.483609058927  0.483696467845  0.483619389813  58.7 10  51.0 10  
2.0  0.489285670158  0.489768396887  0.489271466337  44.8 10  51.4 10  
2.5  0.475195880730  0.477010176884  0.474956706841  31.8 10  42.4 10  
3.0  0.444314559627  0.449654147777  0.443246065237  35.3 10  31.1 10  
3.5  0.400307137745  0.413570550237  0.397090388751  21.3 10  33.2 10  
4.0  0.347253385000  0.376334743008  0.339533651100  22.9 10  37.7 10  
4.5  0.289356285728  0.347294420276  0.273488796880  25.8 10  21.6 10  
5.0  0.230656107027  0.337636829046  0.201586995190  11.1 10  22.9 10  

 
Figure 2.  The compared results for the GDTM solution, GDTM-Padé solutionand exact solution for Example 2 
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Note that for both aforementioned examples, the GDTM solutions in the interval [0,1]are more 

accurate than the approximation solutions obtained in Ref. [21]. When 1t  , the accuracy of the 

approximation is improved significantly by using Padé-approximation for GDTM solution. 

 

Example 3: In this example, consider Eq. (1) with 3, 1,m J   and the following nonzero 

coefficients ,jn jn  and jn  

1
01 11 02

01 11 02

, 1, ,
3

1 1
, , 1,

3 2

t t
e  

  

   

  
 

and 

1 7 5 4 3 2

7 5 4 3 2

8 2 5 16 1 4
( ) 3

2187 27 81 27 3 3
893 5847 305 235 290

374 9,
48 16 48 4 3

tf t e t t t t t t

t t t t t t

              

      
 

The nonzero coefficients inc  in the initial conditions are given as 

00 01 02 11 12 21 221, 1, 2, 1, 1, 2, 3,c c c c c c c           

and 

0 1 25, 7, 6.       

Therefore, we arrive at the following linear DDE as 

(3) (2) 1 (1) (1)( ) ( ) ( )
3 3 2

tt t t
u t u t e u u f t                 

 (26) 

with the initial condition  

(1) (2)

(1) (2)

(1) (2)

(0) (0) 2 (0) 5

(0) (0) 7

2 (0) 3 (0) 6

u u u

u u

u u

        

 
(27) 

The exact solution of this problem is 

8 6 5 4 3 2( ) 3 4 2 3u t t t t t t t t         (28) 

The differential transform of Eq. (26) at 0 0t  is obtained as 
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where 
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The initial condition in Eq. (27) can be transformed as 

(2)
(1) (0)

(0) (0) 0, (1) (0) 3, (2) 2
2

u
U u U u U        

(30) 

By taking 8N   and 0,1...,5k  , we can derive the coefficients ( )U k  and get the 8-order 

approximation solution as 

2 3 4 5 6 15 7 8( ) 3 2 4 3 2.68005974139 10 0.999999999999u t t t t t t t t t          

It is observed that the GDTM solution for this example is very close to the exact solution. For 

this example, the numerical results are shown in Table 4 and the exact and approximate solutions 

are plotted in Figure 3. 

Table 4. Numerical results of example3 

t  exact solution
 

GDTM solution
 

0.0  0.00000000000  0.00000000000  
0.5  0.94921875000  0.94921875000  
1.0  1.00000000000  1.00000000000  
1.5  0.73828125000  0.73828125000  
2.0  90.0000000000  90.0000000000  
2.5  841.425781250  841.425781250  
3.0  4437.00000000  4436.99999999  
3.5  17050.1132812  17050.1132812  
4.0  53204.0000000  53203.9999999  
4.5  51.42970800781 10   51.42970800781 10   
5.0  53.43035000000 10   53.43035000000 10   
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Figure 3. The compared results for GDTM and exact solutions for Example 3 

5. Conclusions 
In this study, the GDTM-Padé technique is employed successfully for solving DDEs. GDTM 

reduces the computational difficulties and needs fewer computations in comparison with traditional 

methods. Also, Padé-approximation is applied to improve the accuracy of GDTM solutions. Three 

examples solved and the results have been compared with the exact solution through plotting 

figures and giving tables. These comparisons verify the accuracy of the proposed method. 

Comparing with the results reported by the homotopy perturbation method [21], the solution 

obtained by GDTM-Padé solutions is in a good agreement with exact solution meets higher 

accuracy. Thus, the GDTM-Padé method is an effective method for solving linear and nonlinear 

DDEs. 
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